Вкусные кулинарные рецепты с фото

Мясной рулет в кляре


рулет из мясного фарша | Независимый партнер Herbalife

Не знаете, как разнообразить своё меню? Тогда читайте рецепт, как приготовить рулет из мясного фарша с начинкой  в кляре. Обалденно вкусно и просто! То что нужно на диете Гербалайф!

Нет ничего вкуснее и полезнее, чем еда приготовленная с любовью своими руками! Ведь когда вы готовите с душой и процесс усвоения пищи идёт легче и приятнее, да еще и получается худеть правильно!

Пройти тест коррекции веса!

Не идти на сделку с собой, поддаваясь сиюминутному чувству поесть быстро и калорийно! Не наедайтесь бутербродами, что бы потом не было мучительно больно! Готовьте сами! А если не умеете, учитесь готовить вместе с нами! ;)

Рулет из мясного фарша с начинкой в кляре

 

Пройти тест коррекции веса!

Продукты
[paragraph_left]

[/paragraph_left]

Тесто для кляра
Приготовление
    1. Берём готовый домашний фарш, солим, перчим и разводим молоком.
    2. Яйца отвариваем до готовности, остужаем, чистим и трём на крупной тёрке.
    3. Сыр режем кубиками или трём на крупной тёрке.
    4. Берём поддон, расстилаем на нём пищевую плёнку и раскладываем фарш ровным слоем.
    5. На фарш выкладываем подготовленные сыр и яйцо.
    6. Приподнимая край плёнки, сворачиваем фарш в рулет.
    7. Завязываем края рулета и отправляем его в морозильную камеру на 1,5 — 2 часа.
    8. Перед тем как достать наш рулетик, готовим кляр — взбиваем яйца, сметану и муку, добавляем приправу.
    9. Затем достаём рулет из морозилки, чуть-чуть оттаиваем при комнатной температуре.
    10. Нарезаем рулет ровными кусочками, толщиной 1,5 — 2 см.
    11. Обмакиваем кусочки рулета в кляр и выкладываем, на смазанную подсолнечным маслом, сковородку. Чтобы было удобнее обмакивать, кладём кусочки на вилку!

Пройти тест коррекции веса!

Я готовила так,ставила сковородку в предварительно разогретую до 250 градусов духовку и запекала до появления золотистой, румяной корочки.

Блюдо получилось очень нежным и сочным. Ушло на ура! :) Не не забываем, что всё полезно в меру!

Приятного всем аппетита!

Снижение веса это огромная работа. Это большая ответственность, как для дистрибьютора (независимого партнёра), так и для клиента! Мы не собираемся просто продавать вам продукты, лишь бы продать! Мы научим вас правильно питаться с продуктами Гербалайф, готовить вкусные диетические рецепты и доступно объясним простые физические упражнения, чтобы вы могли привести себя в форму! Научившись всему этому, вы станете совершенно другим человеком, а о прежнем вашем состоянии у вас останутся лишь вспоминания.

Самое главное ведь это ваше желание!!! Поэтому, смелее включайтесь в процесс снижения веса, изучайте низкокалорийные рецепты, узнавайте как приготовить рулет из мясного фарша с вкусной начинкой в нежном кляре, диетические котлеты и получайте удовольствие от диеты Гербалайф и потерянных килограммов! :)

Смотрите меню Гербалайф на неделю.

Об управлении состоянием батареи в ноутбуках Mac

В

macOS Catalina 10.15.5 реализована функция управления состоянием батареи - функция, предназначенная для увеличения срока службы батареи вашего ноутбука Mac.

О литий-ионной батарее в ноутбуке Mac

В батареях для ноутбуков Mac

используется литий-ионная технология.Литий-ионные аккумуляторы быстро заряжаются, долговечны и в настоящее время представляют собой лучшие технологии для питания вашего компьютера.

Все аккумуляторные батареи - это расходные материалы, эффективность которых с возрастом снижается, а их возраст определяется не только временем. Срок службы батареи зависит от ее химического возраста, на который влияют такие факторы, как температурный режим и режим зарядки. По мере химического старения аккумулятора вашего ноутбука его зарядная емкость уменьшается.

С помощью этих советов по увеличению производительности аккумулятора вы сможете максимально эффективно использовать все свои устройства Apple.А благодаря управлению состоянием аккумулятора ваш ноутбук Mac может еще больше оптимизировать расход заряда аккумулятора.

Как помогает управление состоянием батареи

Функция управления работоспособностью аккумулятора в macOS 10.15.5 предназначена для увеличения срока службы аккумулятора за счет снижения скорости его химического старения. Функция делает это, отслеживая историю температуры вашего аккумулятора и режим зарядки.

На основе собранных измерений система управления работоспособностью аккумулятора может снизить максимальный заряд аккумулятора в этом режиме. Это происходит по мере необходимости, чтобы гарантировать, что ваша батарея заряжается до уровня, оптимизированного для вашего использования, что снижает износ батареи и замедляет ее химическое старение.

Хотя управление состоянием аккумулятора увеличивает срок службы аккумулятора, оно также может сократить время, в течение которого Mac работает от одной зарядки аккумулятора, когда применяются ограничения емкости.Если ваша приоритетная задача - продлить срок службы ноутбука Mac до подзарядки, вы можете отключить эту функцию.

Когда включено управление состоянием аккумулятора, максимальная емкость заряда аккумулятора может быть ограничена. Хотя эта функция предназначена для увеличения срока службы аккумулятора, ограниченная максимальная емкость может обновить меню состояния аккумулятора, чтобы указать на необходимость обслуживания.

Как контролировать функцию управления состоянием батареи

Управление состоянием аккумулятора включено по умолчанию, когда вы покупаете новый ноутбук Mac с macOS 10.15.5 или после обновления до macOS 10.15.5 на ноутбуке Mac с портами Thunderbolt 3.

Если вы хотите выключить его, выполните следующие действия:

  1. Выберите «Системные настройки» в меню Apple , затем щелкните «Энергосбережение».
  2. Щелкните Состояние батареи.
  3. Снимите флажок "Управление состоянием батареи" и нажмите "ОК".
  4. Щелкните Выключить.

Обратите внимание, что отключение этой функции может сократить срок службы аккумулятора.

Дата публикации:

.

проблем со здоровьем, связанных с аккумуляторами - Battery University

Узнайте, что можно и чего нельзя делать при обращении с аккумуляторами.

Батареи безопасны, но необходимо соблюдать осторожность при прикосновении к поврежденным элементам и при работе со свинцово-кислотными системами, имеющими доступ к свинцу и серной кислоте. В некоторых странах свинцовую кислоту называют опасным материалом, и это правильно. Свинец может быть опасен для здоровья при неправильном обращении.

Свинец

Свинец - это токсичный металл, который может попасть в организм при вдыхании свинцовой пыли или проглатывании при прикосновении к рту руками, загрязненными свинцом.При попадании на землю частицы кислоты и свинца загрязняют почву и при высыхании переносятся по воздуху. Дети и плоды беременных женщин наиболее уязвимы для воздействия свинца, потому что их организм развивается. Избыточный уровень свинца может повлиять на рост ребенка, вызвать повреждение мозга, повредить почки, ухудшить слух и вызвать поведенческие проблемы. У взрослых свинец может вызвать потерю памяти и снизить способность к концентрации внимания, а также нанести вред репродуктивной системе. Также известно, что свинец вызывает высокое кровяное давление, нервные расстройства, боли в мышцах и суставах.Исследователи предполагают, что Людвиг ван Бетховен заболел и умер из-за отравления свинцом.

К 2017 году члены Международной ассоциации свинца (ILA) хотят поддерживать уровень свинца в крови рабочих горнодобывающих, плавильных, нефтеперерабатывающих и перерабатывающих предприятий на уровне ниже 30 микрограммов на децилитр (30 мкг / дл). В 2014 году средний участвующий сотрудник приходил на прием при 15,6 мкг / дл, но 4,8% были выше 30 мкг / дл. (Source Batteries & Energy Storage Technology, лето 2015.)

В 2019 году Университет Южной Калифорнии опубликовал данные об обнаружении свинца в зубах детей, живущих рядом с заводом по переработке батарей Exide Technologies в Верноне, штат Калифорния.


Рисунок 1: Свинец обнаружен в зубах младенцев возле завода по переработке аккумуляторов.


Свинец содержится в почве в естественных условиях на уровне 15–40 мг / кг. Этот уровень может многократно увеличиваться вблизи заводов по производству и переработке свинцовых аккумуляторов.Уровни загрязнения почвы свинцом в развивающихся странах, в том числе на африканском континенте, составляют 40–140 000 мг / кг. (См. BU-705: Как утилизировать батареи.)

Серная кислота

Серная кислота в свинцово-кислотных аккумуляторах очень агрессивна и более вредна, чем кислоты, используемые в большинстве других аккумуляторных систем. Попадание в глаза может вызвать необратимую слепоту; глотание повреждает внутренние органы, что может привести к летальному исходу. При оказании первой помощи необходимо промывать кожу в течение 10–15 минут большим количеством воды, чтобы охладить пораженные ткани и предотвратить вторичное повреждение.Немедленно снимите загрязненную одежду и тщательно промойте подлежащую кожу. При обращении с серной кислотой всегда надевайте защитное снаряжение.


Кадмий

Кадмий, используемый в никель-кадмиевых батареях, при попадании внутрь считается более вредным, чем свинец. Рабочие заводов по производству никель-кадмиевых батарей в Японии испытывают проблемы со здоровьем из-за длительного воздействия металла, и правительства запретили утилизацию никель-кадмиевых батарей на свалках. Мягкий беловатый металл, который естественным образом встречается в почве, может повредить почки.Кадмий может проникнуть через кожу при прикосновении к разлитой батарее. Поскольку большинство никель-кадмиевых батарей герметично, обращение с неповрежденными элементами не представляет опасности для здоровья; осторожность требуется при работе с открытым аккумулятором.

Металлогидрид никеля считается нетоксичным, и единственное беспокойство вызывает электролит. Хотя никель токсичен для растений, он не опасен для человека.

Литий-ионный тоже безвреден - аккумулятор содержит мало токсичного материала. Тем не менее, при работе с поврежденным аккумулятором соблюдать осторожность.При обращении с разлитой батареей не касайтесь рта, носа или глаз. Тщательно вымойте руки.

Храните маленькие батарейки в недоступном для детей месте. Дети младше четырех лет чаще всего проглатывают батарейки, и чаще всего попадают внутрь батарейки. Ежегодно только в Соединенных Штатах более 2800 детей проходят лечение в отделениях неотложной помощи по поводу проглатывания батарейки. Согласно отчету за 2015 год, количество серьезных травм и смертей от проглатывания батареек увеличилось в девять раз за последнее десятилетие.

Батарея часто застревает в пищеводе (трубке, по которой проходит еда). Вода или слюна создают электрический ток, который может вызвать химическую реакцию с образованием гидроксида, едкого иона, вызывающего серьезные ожоги окружающих тканей. Врачи часто неправильно диагностируют симптомы, которые могут проявляться в виде лихорадки, рвоты, плохого аппетита и усталости. Батареи, которые проходят через пищевод, часто проходят через пищеварительный тракт с незначительными повреждениями или без них. Совет родителям - выбирать saf

.

Заряд в секундах, в последние месяцы

(Pocket-lint). Хотя смартфоны, умные дома и даже умные носимые устройства становятся все более совершенными, их мощность все еще ограничена. Аккумулятор не совершенствовался десятилетиями. Но мы находимся на пороге революции власти.

Крупные технологические и автомобильные компании слишком осведомлены об ограничениях литий-ионных аккумуляторов.Несмотря на то, что чипы и операционные системы становятся более эффективными для экономии энергии, мы все еще рассматриваем только один или два дня использования смартфона перед подзарядкой.

Хотя может пройти некоторое время, прежде чем мы сможем прожить неделю жизни наших телефонов, разработка идет хорошо. Мы собрали все лучшие открытия в области аккумуляторов, которые могут быть с нами в ближайшее время, от беспроводной зарядки до сверхбыстрой 30-секундной подзарядки. Надеюсь, скоро вы увидите эту технологию в своих гаджетах.

NAWA Technologies

Электрод из углеродных нанотрубок с вертикальной ориентацией

Компания NAWA Technologies разработала и запатентовала сверхбыстрый углеродный электрод, который, как утверждается, изменил правила игры на рынке аккумуляторов.В нем используется конструкция с вертикально расположенными углеродными нанотрубками (VACNT), и NAWA заявляет, что он может повысить мощность батареи в десять раз, увеличить запас энергии в три раза и увеличить срок службы батареи в пять раз. Компания считает, что электромобили являются основным бенефициаром, сокращая углеродный след и стоимость производства аккумуляторов, одновременно повышая производительность. NAWA заявляет, что дальность действия 1000 км может стать нормой, а время зарядки сокращено до 5 минут, чтобы достичь 80 процентов. Технология может быть запущена в производство уже в 2023 году.

Литий-ионная батарея без кобальта

Исследователи из Техасского университета разработали литий-ионную батарею, в которой в качестве катода не используется кобальт. Вместо этого он переключился на высокий процент никеля (89 процентов), используя марганец и алюминий в качестве других ингредиентов. «Кобальт - наименее распространенный и самый дорогой компонент в катодах аккумуляторных батарей», - сказал профессор Арумугам Мантирам, профессор кафедры машиностроения Уолкера и директор Техасского института материалов.«И мы полностью устраняем это». Команда говорит, что с помощью этого решения они преодолели типичные проблемы, обеспечив длительный срок службы батареи и равномерное распределение ионов.

SVOLT представляет батареи для электромобилей, не содержащие кобальт

Несмотря на то, что свойства электромобилей по снижению выбросов широко распространены, все еще существуют разногласия по поводу аккумуляторов, особенно по поводу использования таких металлов, как кобальт. Компания SVOLT, штаб-квартира которой находится в Чанчжоу, Китай, объявила о производстве безкобальтовых батарей, предназначенных для рынка электромобилей.Помимо сокращения содержания редкоземельных металлов, компания заявляет, что они обладают более высокой плотностью энергии, что может привести к дальности действия до 800 км (500 миль) для электромобилей, а также продлить срок службы батареи и повысить безопасность. Мы не знаем, где именно мы увидим эти батареи, но компания подтвердила, что работает с крупным европейским производителем.

Тимо Иконен, Университет Восточной Финляндии

На шаг ближе к кремниевым анодным литий-ионным батареям

В поисках решения проблемы нестабильного кремния в литий-ионных батареях исследователи из Университета Восточной Финляндии разработали метод производства гибридного анода. , используя микрочастицы мезопористого кремния и углеродные нанотрубки.В конечном итоге цель состоит в том, чтобы заменить графит в качестве анода в батареях и использовать кремний, емкость которого в десять раз больше. Использование этого гибридного материала улучшает характеристики батареи, в то время как силиконовый материал устойчиво производится из золы шелухи ячменя.

Университет Монаша

Литий-серные аккумуляторы могут превзойти литий-ионные, снизить воздействие на окружающую среду

Исследователи из Университета Монаша разработали литий-серные аккумуляторы, способные обеспечивать питание смартфона в течение 5 дней, превосходя литий-ионные.Исследователи изготовили эту батарею, имеют патенты и интерес производителей. У группы есть финансирование для дальнейших исследований в 2020 году, заявив, что дальнейшие исследования автомобилей и использования сетей будут продолжены.

Утверждается, что новая технология аккумуляторов оказывает меньшее воздействие на окружающую среду, чем литий-ионные, и снижает производственные затраты, при этом предлагая возможность питания автомобиля на 1000 км (620 миль) или смартфона в течение 5 дней.

Аккумулятор IBM получен из морской воды и превосходит по своим характеристикам литий-ионный

IBM Research сообщает, что он обнаружил новый химический состав аккумулятора, который не содержит тяжелых металлов, таких как никель и кобальт, и потенциально может превзойти литий-ионные.IBM Research утверждает, что этот химический состав никогда раньше не использовался в комбинации в батареях и что материалы можно извлекать из морской воды.

Производительность аккумулятора многообещающая, при этом IBM Research заявляет, что он может превзойти литий-ионный в ряде различных областей - он дешевле в производстве, он может заряжаться быстрее, чем литий-ионный, и может иметь как более высокую мощность. и плотности энергии. Все это доступно в аккумуляторах с низкой горючестью электролитов.

IBM Research отмечает, что эти преимущества сделают ее новую технологию аккумуляторов подходящей для электромобилей, и вместе с Mercedes-Benz, среди прочих, компания работает над превращением этой технологии в жизнеспособную коммерческую батарею.

Panasonic

Система управления батареями Panasonic

Хотя литий-ионные батареи повсюду и их число растет, управление этими батареями, включая определение того, когда у них закончился срок службы, затруднено.Panasonic, работая с профессором Масахиро Фукуи из Университета Рицумейкан, разработала новую технологию управления батареями, которая значительно упростит отслеживание батарей и определение остаточной стоимости литий-ионных в них.

Panasonic заявляет, что ее новую технологию можно легко применить с изменением системы управления батареями, что упростит мониторинг и оценку батарей с несколькими составными ячейками, которые вы можете найти в электромобиле. Panasonic считает, что эта система поможет продвинуться в направлении устойчивого развития, поскольку сможет лучше управлять повторным использованием и переработкой литий-ионных батарей.

Асимметричная модуляция температуры

Исследования продемонстрировали метод зарядки, который приближает нас на шаг ближе к экстремально быстрой зарядке - XFC - который направлен на обеспечение 200 миль пробега электромобиля примерно за 10 минут с зарядкой 400 кВт. Одна из проблем с зарядкой - это литиевая гальваника в батареях, поэтому метод асимметричной температурной модуляции заряжает при более высокой температуре, чтобы уменьшить гальванику, но ограничивает это до 10-минутных циклов, избегая роста межфазной границы твердого электролита, что может сократить срок службы батареи.Сообщается, что этот метод уменьшает деградацию батареи, позволяя заряжать XFC.

Pocket-lint

Песочная батарея дает в три раза больше времени автономной работы

В этом альтернативном типе литий-ионной батареи используется кремний для достижения в три раза большей производительности, чем у современных графитовых литий-ионных батарей. Батарея по-прежнему литий-ионная, как и в вашем смартфоне, но в анодах используется кремний вместо графита.

Ученые из Калифорнийского университета в Риверсайде какое-то время занимались нанокремнием, но он слишком быстро разрушается, и его трудно производить в больших количествах.Используя песок, его можно очистить, измельчить в порошок, затем измельчить с солью и магнием перед нагреванием для удаления кислорода, что приведет к получению чистого кремния. Он пористый и трехмерный, что помогает повысить производительность и, возможно, продлить срок службы батарей. Изначально мы начали это исследование в 2014 году, и теперь оно приносит свои плоды.

Silanano - стартап по производству аккумуляторов, который выводит эту технологию на рынок и получил большие инвестиции от таких компаний, как Daimler и BMW. Компания заявляет, что ее решение может быть применено к существующему производству литий-ионных аккумуляторов, поэтому оно настроено на масштабируемое развертывание, обещая прирост производительности батареи на 20% сейчас или на 40% в ближайшем будущем.

Захват энергии от Wi-Fi

Хотя беспроводная индуктивная зарядка является обычным явлением, возможность захвата энергии от Wi-Fi или других электромагнитных волн остается проблемой. Однако группа исследователей разработала ректенну (антенну, собирающую радиоволны), которая представляет собой всего лишь несколько атомов, что делает ее невероятно гибкой.

Идея состоит в том, что устройства могут включать в себя эту ректенну на основе дисульфида молибдена, чтобы энергия переменного тока могла быть получена от Wi-Fi в воздухе и преобразована в постоянный ток, либо для подзарядки батареи, либо для непосредственного питания устройства.Это может привести к появлению медицинских таблеток с питанием без необходимости во внутренней батарее (что безопаснее для пациента) или мобильных устройств, которые не нужно подключать к источнику питания для подзарядки.

Энергия, полученная от владельца устройства

Вы можете стать источником энергии для своего следующего устройства, если исследования TENG принесут свои плоды. TENG или трибоэлектрический наногенератор - это технология сбора энергии, которая улавливает электрический ток, генерируемый при контакте двух материалов.

Исследовательская группа из Суррейского института передовых технологий и Университета Суррея дала понять, как эту технологию можно использовать для питания таких вещей, как носимые устройства. Хотя мы еще далеки от того, чтобы увидеть это в действии, исследование должно дать дизайнерам инструменты, необходимые для эффективного понимания и оптимизации будущей реализации TENG.

Золотые батареи с нанопроволокой

Великие умы Калифорнийского университета в Ирвине создали треснувшие батареи с нанопроволокой, которые могут выдержать много перезарядок.В результате в будущем батареи могут не разрядиться.

Нанопроволока, в тысячу раз тоньше человеческого волоса, открывает большие возможности для будущих батарей. Но они всегда ломались при подзарядке. Это открытие использует золотые нанопроволоки в гелевом электролите, чтобы избежать этого. Фактически, эти батареи были проверены на перезарядку более 200 000 раз за три месяца и не показали никаких повреждений.

Твердотельные литий-ионные

Твердотельные батареи традиционно обеспечивают стабильность, но за счет передачи электролита.В статье, опубликованной учеными Toyota, рассказывается об их испытаниях твердотельной батареи, в которой используются сульфидные суперионные проводники. Все это означает превосходный аккумулятор.

В результате получился аккумулятор, способный работать на уровне суперконденсатора и полностью заряжаться или разряжаться всего за семь минут, что делает его идеальным для автомобилей. Поскольку он твердотельный, это также означает, что он намного стабильнее и безопаснее, чем существующие батареи. Твердотельный блок также должен работать при температуре от минус 30 до 100 градусов Цельсия.

Электролитные материалы по-прежнему создают проблемы, поэтому не ожидайте увидеть их в ближайшее время в автомобилях, но это шаг в правильном направлении к более безопасным и быстро заряжаемым аккумуляторам.

Графеновые батареи Grabat

Графеновые батареи потенциально могут быть одними из самых лучших среди имеющихся. Grabat разработал графеновые батареи, которые могут обеспечить электромобилям запас хода до 500 миль без подзарядки.

Graphenano, компания, стоящая за разработкой, заявляет, что аккумуляторы можно полностью зарядить всего за несколько минут и они могут заряжаться и разряжаться в 33 раза быстрее, чем литий-ионные.Разряд также важен для таких вещей, как автомобили, которым требуется огромное количество энергии для быстрого трогания с места.

Нет информации о том, используются ли аккумуляторы Grabat в настоящее время в каких-либо продуктах, но у компании есть аккумуляторы для автомобилей, дронов, мотоциклов и даже для дома.

Лазерные микроконденсаторы

Rice Univeristy

Ученые из Университета Райса совершили прорыв в создании микроконденсаторов. В настоящее время их производство дорогое, но в них используются лазеры, которые вскоре могут измениться.

При использовании лазеров для выжигания электродных рисунков на листах пластика затраты на производство и усилия значительно снижаются. В результате получается аккумулятор, который может заряжаться в 50 раз быстрее, чем нынешние аккумуляторы, и разряжаться даже медленнее, чем современные суперконденсаторы. Они даже прочные, способны работать после более чем 10 000 сгибаний во время испытаний.

Пенные аккумуляторы

Прието считает, что будущее аккумуляторов - за 3D. Компании удалось решить эту проблему с помощью своей батареи, в которой используется вспененная медь.

Это означает, что эти батареи будут не только более безопасными благодаря отсутствию горючего электролита, но также будут обеспечивать более длительный срок службы, более быструю зарядку, в пять раз более высокую плотность, будут дешевле в производстве и будут меньше, чем существующие предложения.

Prieto стремится в первую очередь помещать свои батареи в мелкие предметы, например, в носимые устройства. Но там говорится, что аккумуляторы можно масштабировать, чтобы мы могли видеть их в телефонах и, возможно, даже в автомобилях в будущем.

Carphone Warehouse

Складной аккумулятор похож на бумагу, но прочный

Jenax J.Аккумулятор Flex был разработан, чтобы сделать гибкие гаджеты возможными. Батарея, похожая на бумагу, складывается и является водонепроницаемой, что означает, что ее можно интегрировать в одежду и носимые устройства.

Батарея уже создана и даже прошла испытания на безопасность, в том числе ее сложили более 200 000 раз без потери производительности.

Ник Билтон / The New York Times

uBeam по воздуху зарядка

uBeam использует ультразвук для передачи электричества. Энергия преобразуется в звуковые волны, неслышимые для людей и животных, которые передаются, а затем снова преобразуются в энергию при достижении устройства.

С концепцией uBeam наткнулась 25-летняя выпускница астробиологии Мередит Перри. Она основала компанию, которая позволит заряжать гаджеты по воздуху с помощью пластины толщиной 5 мм. Эти передатчики можно прикрепить к стенам или сделать предметами декоративного искусства, чтобы передавать энергию на смартфоны и ноутбуки. Гаджетам просто нужен тонкий приемник, чтобы принимать заряд.

StoreDot

StoreDot заряжает мобильные телефоны за 30 секунд

StoreDot, стартап, созданный на базе кафедры нанотехнологий Тель-Авивского университета, разработал зарядное устройство StoreDot.Он работает с современными смартфонами и использует биологические полупроводники, изготовленные из природных органических соединений, известных как пептиды - короткие цепочки аминокислот, которые являются строительными блоками белков.

В результате получилось зарядное устройство, способное заряжать смартфон за 60 секунд. Батарея состоит из «негорючих органических соединений, заключенных в многослойную защитную структуру, предотвращающую перенапряжение и нагрев», поэтому проблем с ее взрывом быть не должно.

Компания также объявила о планах создать аккумулятор для электромобилей, который заряжается за пять минут и обеспечивает запас хода до 300 миль.

Пока неизвестно, когда аккумуляторы StoreDot будут доступны в глобальном масштабе - мы ожидали, что они появятся в 2017 году, - но когда они появятся, мы ожидаем, что они станут невероятно популярными.

Pocket-lint

Прозрачное солнечное зарядное устройство

Alcatel продемонстрировал мобильный телефон с прозрачной солнечной панелью над экраном, которая позволит пользователям заряжать свой телефон, просто поместив его на солнце.

Хотя вряд ли он появится в продаже в течение некоторого времени, компания надеется, что он каким-то образом решит повседневные проблемы, связанные с постоянным отсутствием заряда батареи.Телефон будет работать как с прямыми солнечными лучами, так и со стандартным освещением, как и обычные солнечные батареи.

Phienergy

Алюминиево-воздушная батарея обеспечивает пробег на 1100 миль без подзарядки

Автомобиль сумел проехать 1100 миль на одном заряде аккумулятора. Секрет этого супердиапазона заключается в технологии батареи, называемой «алюминий-воздух», которая использует кислород воздуха для заполнения своего катода. Это делает его намного легче, чем заполненные жидкостью литий-ионные аккумуляторы, что дает автомобилю гораздо больший запас хода.

Бристольская робототехническая лаборатория

Батареи с питанием от мочи

Фонд Билла Гейтса финансирует дальнейшие исследования Бристольской робототехнической лаборатории, которая обнаружила батареи, которые могут работать от мочи. Этого достаточно, чтобы зарядить смартфон, который ученые уже продемонстрировали. Но как это работает?

Используя микробный топливный элемент, микроорганизмы собирают мочу, расщепляют ее и выделяют электричество.

Звук работает

Исследователи из Великобритании создали телефон, который может заряжаться, используя окружающий звук в атмосфере вокруг него.

Смартфон построен по принципу пьезоэлектрического эффекта. Были созданы наногенераторы, которые собирают окружающий шум и преобразуют его в электрический ток.

Наностержни даже реагируют на человеческий голос, а это означает, что болтливые мобильные пользователи могут подключать свой телефон во время разговора.

Двойная угольная батарея Ryden заряжается в 20 раз быстрее.

Power Japan Plus уже анонсировала новую технологию аккумуляторов под названием Ryden dual carbon. Он не только прослужит дольше и будет заряжаться быстрее, чем литиевые, но его можно будет производить на тех же заводах, где производятся литиевые батареи.

В аккумуляторах используются углеродные материалы, что означает, что они более устойчивы и экологически безопасны, чем существующие альтернативы. Это также означает, что батареи будут заряжаться в двадцать раз быстрее, чем литий-ионные. Они также будут более долговечными, с возможностью выдерживать до 3000 циклов зарядки, а также они более безопасны с меньшей вероятностью возгорания или взрыва.

Натрий-ионные аккумуляторы

Ученые из Японии работают над новыми типами аккумуляторов, которые не нуждаются в литии, таких как аккумулятор вашего смартфона.В этих новых батареях будет использоваться натрий, один из самых распространенных материалов на планете, а не редкий литий, и они будут в семь раз эффективнее обычных батарей.

Исследования натриево-ионных аккумуляторов ведутся с восьмидесятых годов в попытке найти более дешевую альтернативу литию. Используя соль, шестой по распространенности элемент на планете, можно сделать батареи намного дешевле. Ожидается, что в ближайшие 5-10 лет начнется коммерциализация аккумуляторов для смартфонов, автомобилей и других устройств.

Upp

Зарядное устройство для водородных топливных элементов Upp

Переносное зарядное устройство для водородных топливных элементов Upp уже доступно. Он использует водород для питания вашего телефона, не позволяя вам отвлекаться и оставаться экологически чистым.

Одна водородная ячейка обеспечит пять полных зарядов мобильного телефона (емкость 25 Втч на ячейку). И единственный побочный продукт - водяной пар. Разъем USB типа A означает, что он будет заряжать большинство USB-устройств с выходом 5 В, 5 Вт, 1000 мА.

Батареи со встроенным огнетушителем

Литий-ионные батареи нередко перегреваются, загораются и даже могут взорваться.Аккумулятор в Samsung Galaxy Note 7 - яркий тому пример. Исследователи Стэнфордского университета придумали литий-ионные батареи со встроенными огнетушителями.

В батарее есть компонент, называемый трифенилфосфатом, который обычно используется в качестве антипирена в электронике, добавленный к пластиковым волокнам, чтобы помочь разделить положительный и отрицательный электроды. Если температура батареи поднимается выше 150 градусов C, пластмассовые волокна плавятся и выделяется трифенилфосфат.Исследования показывают, что этот новый метод может предотвратить возгорание аккумуляторов за 0,4 секунды.

Майк Циммерман

Батареи, защищенные от взрыва

Литий-ионные батареи имеют довольно летучий слой пористого материала жидкого электролита, расположенный между анодным и катодным слоями. Майк Циммерман, исследователь из Университета Тафтса в Массачусетсе, разработал батарею, которая имеет вдвое большую емкость, чем литий-ионные, но без присущих ей опасностей.

Батарея Циммермана невероятно тонкая, немного толще, чем две кредитные карты, и заменяет жидкость электролита пластиковой пленкой, которая имеет аналогичные свойства.Он может противостоять прокалыванию, измельчению и нагреванию, так как он негорючий. Еще предстоит провести много исследований, прежде чем технология сможет выйти на рынок, но хорошо знать, что существуют более безопасные варианты.

Батареи Liquid Flow

Ученые из Гарварда разработали батарею, которая хранит свою энергию в органических молекулах, растворенных в воде с нейтральным pH. Исследователи говорят, что этот новый метод позволит батарее Flow работать исключительно долгое время по сравнению с нынешними литий-ионными батареями.

Маловероятно, что мы увидим эту технологию в смартфонах и т.п., поскольку жидкий раствор, связанный с батареями Flow, хранится в больших резервуарах, чем больше, тем лучше. Считается, что они могут быть идеальным способом хранения энергии, создаваемой решениями в области возобновляемых источников энергии, таких как ветер и солнце.

Действительно, исследование Стэнфордского университета использовало жидкий металл в проточной батарее с потенциально отличными результатами, заявляя, что напряжение вдвое выше, чем у обычных проточных батарей. Команда предположила, что это может быть отличным способом хранения непостоянных источников энергии, таких как ветер или солнце, для быстрой передачи в сеть по запросу.

IBM и ETH Zurich и разработали жидкостную проточную батарею гораздо меньшего размера, которая потенциально может быть использована в мобильных устройствах. Эта новая батарея утверждает, что может не только обеспечивать питание компонентов, но и одновременно охлаждать их. Обе компании обнаружили две жидкости, которые подходят для этой задачи, и будут использоваться в системе, которая может производить 1,4 Вт мощности на квадратный см, при этом 1 Вт мощности зарезервирован для питания аккумулятора.

Zap & Go Карбон-ионный аккумулятор

Оксфордская компания ZapGo разработала и произвела первую угольно-ионную аккумуляторную батарею, которая уже готова к использованию потребителями.Углеродно-ионный аккумулятор сочетает в себе сверхбыструю зарядку суперконденсатора с характеристиками литий-ионного аккумулятора, при этом полностью пригодный для вторичной переработки.

Компания предлагает зарядное устройство powerbank, которое полностью заряжается за пять минут, а затем полностью заряжает смартфон за два часа.

Цинково-воздушные батареи

Ученые из Сиднейского университета считают, что они придумали способ производства воздушно-цинковых батарей, который намного дешевле, чем существующие методы.Цинково-воздушные батареи можно считать более совершенными, чем литий-ионные, поскольку они не загораются. Единственная проблема в том, что они полагаются на дорогие компоненты в работе.

Sydney Uni удалось создать воздушно-цинковую батарею без необходимости использования дорогих компонентов, а, скорее, с некоторыми более дешевыми альтернативами. Возможно, появятся более безопасные и дешевые батареи!

Умная одежда

Исследователи из Университета Суррея разрабатывают способ использования одежды в качестве источника энергии.Батарея называется трибоэлектрическим наногенератором (TENG), которая преобразует движение в накопленную энергию. Накопленное электричество затем можно использовать для питания мобильных телефонов или устройств, таких как фитнес-трекеры Fitbit.

Эта технология может быть применена не только к одежде, она может быть интегрирована в тротуар, поэтому, когда люди постоянно ходят по ней, она может накапливать электричество, которое затем может использоваться для питания ленточных ламп или в шинах автомобиля. может привести машину в действие.

Растягиваемые батареи

Инженеры Калифорнийского университета в Сан-Диего разработали растяжимый биотопливный элемент, который может вырабатывать электричество из пота.Говорят, что генерируемой энергии достаточно для питания светодиодов и радиомодулей Bluetooth, а это означает, что однажды она сможет питать носимые устройства, такие как умные часы и фитнес-трекеры.

Графеновый аккумулятор Samsung

Samsung удалось разработать «графеновые шары», которые способны увеличивать емкость существующих литий-ионных аккумуляторов на 45 процентов и заряжаться в пять раз быстрее, чем существующие аккумуляторы. Чтобы представить это в контексте, Samsung заявляет, что его новый аккумулятор на основе графена может быть полностью заряжен за 12 минут, по сравнению с примерно часом для текущего устройства.

Samsung также заявляет, что его можно использовать не только в смартфонах, но и в электромобилях, поскольку он выдерживает температуру до 60 градусов Цельсия.

Более безопасная и быстрая зарядка существующих литий-ионных аккумуляторов

Ученые из WMG из Университета Уорика разработали новую технологию, которая позволяет заряжать существующие литий-ионные аккумуляторы до пяти раз быстрее, чем рекомендуемые пределы. Технология постоянно измеряет температуру батареи гораздо точнее, чем существующие методы.

Ученые обнаружили, что нынешние батареи действительно могут выходить за пределы рекомендуемых пределов, не влияя на производительность или перегрев. Может быть, нам вообще не нужны другие упомянутые новые батареи!

Написано Крисом Холлом.

.

8 хитростей для увеличения времени автономной работы ноутбуков с Linux

Дистрибутивы Linux для настольных ПК не имеют репутации best , когда дело касается времени автономной работы ноутбука и «энергоэффективности».

Ноутбук, который работает 8 часов с Windows 10, часто с трудом может продержаться 4 часа с дистрибутивом Linux, таким как Ubuntu.

Почему? Это зависит. Это сложный, скрытый и спорный вопрос. И учитывая огромное количество ноутбуков и компьютерного оборудования, которое должно поддерживать ядро ​​Linux, это тоже неудивительно.

Склонность пользователей Linux продлевать срок службы старого оборудования - оборудования, батареи которого уже выдержали несколько циклов - также играет важную роль в том, почему, вообще говоря, вы получаете меньше времени автономной работы с Linux, чем с Windows.

Не поймите меня неправильно: Linux энергоэффективен на , когда он точно настроен для оборудования, на котором он работает.

Но если вы запускаете ОС вне диска с универсальной конфигурацией, вам нужно будет немного подстроить себя, чтобы увеличить время автономной работы в Linux.

Итак, ниже вы найдете несколько советов по продлению срока службы батареи в Ubuntu, и все они помогут защитить ваше устройство от шнура питания!

1. Используйте встроенные настройки питания Ubuntu

Вы купили мощный ноутбук и хотите использовать его мощность. Но используйте его, когда это необходимо; когда вы просто просматриваете Reddit на диване или тролляете нас из кафе, не нужно, чтобы ваши поклонники работали сверхурочно.

Ubuntu включает небольшой набор настроек режима энергопотребления, которые вы можете настроить в соответствии со своими потребностями.Например, что делать, когда вы закрываете крышку ноутбука, что делать при критически низком уровне заряда батареи и как себя вести, когда вы подключены к сети переменного тока.

2. Выключите Bluetooth.

Переключить энергоемкий bluetooth

Большинство из нас, кто пользуется мобильными телефонами, знают, что bluetooth сильно истощает уровни мощности. Linux не является исключением, поэтому, если вам не нужен Bluetooth, вы должны его выключить.

Очевидно, что этот совет не так уж и хорош, если для работы вы используете беспроводную клавиатуру и мышь!

В Ubuntu вы можете включать / выключать Bluetooth через меню Bluetooth, которое отображается в области панели задач. Просто щелкните значок Bluetooth и:

Вы можете щелкнуть таким же образом, когда вам понадобится в следующий раз.

Пропустите этот совет, если в вашем ноутбуке используется более новый, щадящий аккумулятор Bluetooth 4.0 LE (если это современный ноутбук, скорее всего, использует это).

3. Выключите Wi-Fi

Не нужен Wi-Fi? Выключите его.

. Если вы не собираетесь быть в сети какое-то время, не забудьте выключить Wi-Fi, так как это может сильно сказаться на разряде батареи.

Даже в фоновом режиме, когда вы не используете карту Wi-Fi или ключ, будет сканировать новые доступные сети.

В Ubuntu (Unity) это так же просто, как перейти к индикатору сети на панели задач, щелкнуть и выбрать пункт меню «Включить сеть», чтобы отключить его.

4. Уменьшите яркость экрана

Еще один очевидный момент: чем ярче экран, тем больше энергии вы потребляете.

Один из самых быстрых и эффективных способов снизить потребление энергии - это уменьшить яркость.

Цифровой загар не нужен.

Если на вашей клавиатуре есть клавиши управления яркостью, коснитесь их, чтобы найти подходящий уровень яркости.Вы также можете использовать ползунок, спрятанный в разделе «Яркость и блокировка» системных настроек Ubuntu.

Вы также можете проверить параметр «Тусклый экран для экономии энергии» , который также присутствует под ползунком.

Еще одно оригинальное предложение - использовать более светлые обои. Почему? Команда ядра Ubuntu однажды отметила, что ЖК-дисплеи потребляют больше энергии для отображения темных цветов, чем более светлые:

‘Полный черный фон может потреблять ~ 0.На 5–1% больше энергии, чем на полностью белом фоне ».

5. Отключите USB-накопители, SD-карты, диски и т. Д.

Отключите устройства, которые вы не используете.

Вы выглядите совершенно безупречно: ваш ноутбук с Linux сочится периферийными устройствами из каждого доступного порта.

Но каждый USB-накопитель, SD-карта и смартфон, которые вы подключили, высасывают драгоценный сок вашего ноутбука.

Отключите ненужные элементы и безопасно извлеките USB-накопители, элементы MTP и т. Д. С помощью Nautilus, Unity или, если вы их используете, с помощью апплета индикатора, такого как отключение индикатора.

6. Закройте приложения, которые вы не используете

Закройте приложения, когда они не нужны.

Запущенные приложения используют процессор и оперативную память, возможно, сеть (даже небольшую) и, возможно, не дают вашему жесткому диску спать - даже если они, кажется, ничего не делают.

Мне кажется, что на моем рабочем месте всегда открыто множество приложений, большинство из которых остаются свернутыми. Google Chrome, VLC, Rhythmbox и так далее.

Некоторые из этих приложений работают в фоновом режиме и активно используют ресурсы моего ноутбука, заставляя мое устройство работать усерднее и, таким образом, потреблять больше энергии для охлаждения.

Если вы то же самое, попробуйте не забыть закрыть приложение, когда закончите с ним (по крайней мере, до тех пор, пока что-то вроде «App Nap» не появится в Linux).

Найдите в Unity Launcher приложения, рядом с которыми есть небольшой индикатор (это означает, что они открыты). Закройте те, которые вы больше не используете, щелкнув правой кнопкой мыши соответствующий значок программы запуска и выбрав опцию «Закрыть / Выйти» (формулировка может отличаться).

7. Избегайте Adobe Flash (по возможности)

Flash - большой убийца батареи

Просмотр Flash-видео на ноутбуке с Linux - это… Что ж, вы могли бы также просверлить отверстие в батарее и позволить литий-ионным внутренностям вытекать по всему полу!

Хорошо, использование Flash - это не , а плохо, но справедливо сказать, что его использование действительно дает заметный удар по времени автономной работы.

Если вы хотите (или нуждаетесь) смотреть онлайн-видео в формате Flash, попробуйте использовать браузер, который настраивает Flash-контент на отображение «по запросу».

Firefox предложит вам «включить» элементы Flash, а в Google Chrome есть скрытая опция «Plugin Power Saver» в c hrome: flags , которую вы можете попробовать.

8. Установите TLP

TLP - популярный инструмент, работающий в фоновом режиме.

Он предлагает полный контроль над различными настройками питания и процессами управления оборудованием. Это позволяет настраивать параметры на желаемый уровень.

Опции включают:

Завалили? Я не удивлен.

По этой причине TLP поставляется с конфигурацией по умолчанию, которая в большинстве случаев должна немного увеличить время автономной работы.

Те, кто чувствуют себя способными, могут настроить доступные параметры или поэкспериментировать с конфигурациями в соответствии с потребностями своего оборудования. Полное руководство по использованию TLP можно найти в вики TLP.

Примечание: TLP - это , а не , с чем можно поиграться. Вы можете предпочесть попробовать более доступную утилиту Laptop Mode Tools из Центра программного обеспечения Ubuntu с аналогичной направленностью (хотя существуют некоторые споры о том, выиграют ли от этого новые ядра Linux).

Бонус: Используете Ubuntu 18.04 или новее? Вы можете установить Slimbook Battery 3, удобный апплет для оптимизации энергопотребления для рабочего стола Ubuntu, обеспечивающий удобство использования TLP.

К тебе

Каковы ваши советы по увеличению времени автономной работы ноутбука с Linux?

Главная »Как сделать» 8 хитростей для увеличения времени автономной работы ноутбуков с Linux

.

Смотрите также



Также смотрите рубрики рецептов: